Polkadot Wiki

Polkadot Wiki

  • 入门指南
  • 学习
  • 建立
  • 参与
  • Kusama
  • Contribute
  • Languages icon中文
    • English
    • Русский
    • 参与翻译

›Basics

概述

  • 入门教程
  • 认领
  • Redenomination of DOT
  • 奖助金计划
  • Thousand Validators Programme
  • Polkadot Ambassador Programme
  • 研究专页
  • 社区
  • 贡献
  • Contributors
  • 专业术语
  • Using ENS with DOT/KSM accounts
  • Ledger Application
  • How to Protect Yourself from Scams
  • 常见问题(FAQ)

学习

  • Polkadot 上线流程
  • Basics

    • Polkadot 架构
    • Polkadot 账户
    • 创建帐户
    • 备份和恢复账户
    • DOT
    • 网络安全
    • Polkadot 共识机制
    • Nominator
    • Validator
    • Collator
    • 治理
    • 身份
    • 如何转账
    • 交易费用
    • Polkadot 主机 (PH)
    • 财政库
    • How to use W3F Registrar

    Parachains

    • 平行链
    • 平行线程
    • 桥接
    • 平行链插槽拍卖
    • Parachain Crowdloans

    Advanced

    • 抵押
    • 代理账户
    • 可用性和有效性
    • 随机性
    • 跨链消息传递 (XCMP)
    • SPREE
    • WebAssembly (Wasm)
    • Sequential Phragmén Method
    • Simple Payouts

    Cryptography

    • 密码学讲解
    • 密匙

    Polkadot Comparisons

    • Comparing Polkadot and Kusama
    • 以太坊 2.0
    • Cosmos
    • Dfinity
    • 与其它比较

建立

  • 开发者专页
  • Development Guide

    • Polkadot 開發者入门指南
    • 平行链开发套件(PDKs)
    • 平行链构建指南
    • Cumulus
    • Building Parachains on Rococo
    • 智能合约
    • 预言机
    • Polkadot 钱包

    Integration Guide

    • Integration Initiation
    • Polkadot 协议
    • 节点管理
    • 节点互动
    • 交易创建

    Tools

    • 工具索引

    Resources

    • 黑客马拉松

参与

  • 网络维护者
  • Parameters
  • Nodes and Dapps

    • 设置全节点
    • 网络
    • 为远程连接设置安全的 WebSocket
    • 解决错误

    Nominator Guides

    • How to Nominate on Polkadot
    • Unbonding and Rebonding

    Validator Guides

    • 如何在 Polkadot 上运行验证节点
    • 验证人付款概述
    • 如何把节点设定为 `systemd` 进程运行
    • 安全验证人节点
    • 如何使用 Polkadot 安全验证人设置
    • 设置哨兵节点
    • 如何升级验证人节点
    • Monitor your node
    • How to Chill

    Governance Guides

    • 参与民主权利
    • 加入议会
    • 投票选举议员
Translate

网络安全

共享安全

Shared security, sometimes referred in documentation as pooled security, is one of the unique value propositions for chains considering to become a parachain and join the Polkadot network. On a high level, shared security means that all parachains that are connected to the Polkadot Relay Chain by leasing a parachain slot will benefit from the economic security provided by the Relay Chain validators.

The notion of shared security is different from interchain protocols that build on an architecture of bridges. For bridge protocols, each chain is considered sovereign and must maintain its own validator set and economic security. One concern in these protocols is on the point of scalability of security. For example, one suggestion to scale blockchains is that of scale by altcoins, which suggests that transaction volumes will filter down to lower market cap altcoins as the bigger ones fill their blocks. A major flaw in this idea is that the lower market cap coins will have less economic security attached, and be easier to attack. A real life example of a 51% attack occurred recently ( Ethereum Classic attack on January 10 ), in which an unknown attacker double spent 219,500 ETC (~1.1M USD). This was followed by two more 51% attacks on ETC.

Polkadot overcomes security scalability concerns since it gravitates all the economic incentives to the Relay Chain and allows the parachains to tap into stronger guarantees at genesis. Sovereign chains must expend much more effort to grow the value of their coin so that it is not easily attackable by well-funded attackers.

例子

Let's compare the standard sovereign security model that exists on current proof-of-work (PoW) chains to that of the shared security of Polkadot. Chains that are secured by their own security model like Bitcoin, Zcash, Ethereum, and their derivatives all must bootstrap their own independent network of miners and maintain a competitive portion of honest hashing power. Since mining is becoming a larger industry that increasingly centralizes on key players, it is becoming more real that a single actor may control enough hash power to attack a chain.

This means that smaller chains that cannot maintain a secure amount of hash power on their networks could potentially be attacked by a large mining cartel at the simple whim of redirecting its hash power away from Bitcoin and toward a new and less secure chain. 51% attacks are viable today with attacks having been reported on Ethereum Classic (see above), Verge, Bitcoin Gold, and other cryptocurrencies.

On Polkadot, this disparity between chain security will not be present. When a parachain connects to Polkadot, the Relay Chain validator set become the securers of that parachain's state transitions. The parachain will only have the overhead of needing to run a few collator nodes to keep the validators informed with the latest state transitions and proofs/witness. Validators will then check these for the parachains to which they are assigned. In this way, new parachains instantly benefit from the overall security of Polkadot even if they have just been launched.

常见问题

安全性与验证人的数量相关吗? 平行链的数量呢?

Security is independent of the number of parachains that are connected to the Polkadot Relay Chain. The correlation of security and the number of validators exists as the higher number of validators will give the network stronger decentralization properties and make it harder to try to take down. However, the biggest indicator of the security of the network is the economic signal of the number of DOT that are bonded and staked. The greater the number of DOT staked by honest validators and nominators, the higher the minimum amount of DOT an attacker would need to acquire a validator slot.

平行链会需要他们自己的安全吗?平行链在什么情况下需要自己的安全性?

Most parachains will not need to worry about their own security, since all state transitions will be secured by the Polkadot Relay Chain validator set. However, in some cases (which are considered more experimental), parachains may require their own security. In general, these cases will revolve around lack of data available to Relay Chain validators.

One example is if the state transition function is some succinct or zero-knowledge proof, the parachain would be responsible for keeping its data available as the Relay Chain won't have it. Additionally, for chains with their own consensus, like the one that enables fast payments on Blink Network, there would probably need to be a Byzantine agreement between stakers before a parachain block is valid. The agreement would be necessary because the data associated with the fast consensus would be unknown to Relay Chain validators.

Last updated on 1/3/2021 by w3fbot
← DOTPolkadot 共识机制 →
  • 共享安全
    • 例子
  • 常见问题
    • 安全性与验证人的数量相关吗? 平行链的数量呢?
    • 平行链会需要他们自己的安全吗?平行链在什么情况下需要自己的安全性?
General
  • About
  • FAQ
  • Contact
  • Build
  • Grants and Bounties
  • Careers
Technology
  • Technology
  • Token
  • Telemetry
  • Substrate
  • Whitepaper
  • Lightpaper
Community
  • Community
  • Documentation
  • Brand Assets
  • Blog
  • Element Chat
  • Medium

Subscribe to the newsletter to hear about Polkadot updates and events.

Polkadot Network
  • © 2021 Web3 Foundation
  • Impressum
  • Disclaimer
  • Privacy
  • Cookie Settings
  • PDF version